using CSV, DataFrames
= CSV.read("golf.dat", DataFrame; delim=' ', ignorerepeated=true)
df 1:5, :] df[
Row | distance | n | y |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 2 | 1443 | 1346 |
2 | 3 | 694 | 577 |
3 | 4 | 455 | 337 |
4 | 5 | 353 | 208 |
5 | 6 | 272 | 149 |
JuliaGPs packages integrate well with Turing.jl because they implement the Distributions.jl interface. You should be able to understand what is going on in this tutorial if you know what a GP is. For a more in-depth understanding of the JuliaGPs functionality used here, please consult the JuliaGPs docs.
In this tutorial, we will model the putting dataset discussed in Chapter 21 of Bayesian Data Analysis. The dataset comprises the result of measuring how often a golfer successfully gets the ball in the hole, depending on how far away from it they are. The goal of inference is to estimate the probability of any given shot being successful at a given distance.
using CSV, DataFrames
df = CSV.read("golf.dat", DataFrame; delim=' ', ignorerepeated=true)
df[1:5, :]
Row | distance | n | y |
---|---|---|---|
Int64 | Int64 | Int64 | |
1 | 2 | 1443 | 1346 |
2 | 3 | 694 | 577 |
3 | 4 | 455 | 337 |
4 | 5 | 353 | 208 |
5 | 6 | 272 | 149 |
We’ve printed the first 5 rows of the dataset (which comprises only 19 rows in total). Observe it has three columns:
distance
– how far away from the hole. I’ll refer to distance
as d
throughout the rest of this tutorialn
– how many shots were taken from a given distancey
– how many shots were successful from a given distanceWe will use a Binomial model for the data, whose success probability is parametrised by a transformation of a GP. Something along the lines of: \[ \begin{aligned} f & \sim \operatorname{GP}(0, k) \\ y_j \mid f(d_j) & \sim \operatorname{Binomial}(n_j, g(f(d_j))) \\ g(x) & := \frac{1}{1 + e^{-x}} \end{aligned} \]
To do this, let’s define our Turing.jl model:
using AbstractGPs, LogExpFunctions, Turing
@model function putting_model(d, n; jitter=1e-4)
v ~ Gamma(2, 1)
l ~ Gamma(4, 1)
f = GP(v * with_lengthscale(SEKernel(), l))
f_latent ~ f(d, jitter)
y ~ product_distribution(Binomial.(n, logistic.(f_latent)))
return (fx=f(d, jitter), f_latent=f_latent, y=y)
end
putting_model (generic function with 2 methods)
We first define an AbstractGPs.GP
, which represents a distribution over functions, and is entirely separate from Turing.jl. We place a prior over its variance v
and length-scale l
. f(d, jitter)
constructs the multivariate Gaussian comprising the random variables in f
whose indices are in d
(plus a bit of independent Gaussian noise with variance jitter
– see the docs for more details). f(d, jitter)
has the type AbstractMvNormal
, and is the bit of AbstractGPs.jl that implements the Distributions.jl interface, so it’s legal to put it on the right-hand side of a ~
. From this you should deduce that f_latent
is distributed according to a multivariate Gaussian. The remaining lines comprise standard Turing.jl code that is encountered in other tutorials and Turing documentation.
Before performing inference, we might want to inspect the prior that our model places over the data, to see whether there is anything obviously wrong. These kinds of prior predictive checks are straightforward to perform using Turing.jl, since it is possible to sample from the prior easily by just calling the model:
19-element Vector{Int64}:
1275
612
404
319
230
210
201
173
169
196
163
164
132
129
153
147
138
103
111
We make use of this to see what kinds of datasets we simulate from the prior:
using Plots
function plot_data(d, n, y, xticks, yticks)
ylims = (0, round(maximum(n), RoundUp; sigdigits=2))
margin = -0.5 * Plots.mm
plt = plot(; xticks=xticks, yticks=yticks, ylims=ylims, margin=margin, grid=false)
bar!(plt, d, n; color=:red, label="", alpha=0.5)
bar!(plt, d, y; label="", color=:blue, alpha=0.7)
return plt
end
# Construct model and run some prior predictive checks.
m = putting_model(Float64.(df.distance), df.n)
hists = map(1:20) do j
xticks = j > 15 ? :auto : nothing
yticks = rem(j, 5) == 1 ? :auto : nothing
return plot_data(df.distance, df.n, m().y, xticks, yticks)
end
plot(hists...; layout=(4, 5))
In this case, the only prior knowledge I have is that the proportion of successful shots ought to decrease monotonically as the distance from the hole increases, which should show up in the data as the blue lines generally go down as we move from left to right on each graph. Unfortunately, there is not a simple way to enforce monotonicity in the samples from a GP, and we can see this in some of the plots above, so we must hope that we have enough data to ensure that this relationship holds approximately under the posterior. In any case, you can judge for yourself whether you think this is the most useful visualisation that we can perform – if you think there is something better to look at, please let us know!
Moving on, we generate samples from the posterior using the default NUTS
sampler. We’ll make use of ReverseDiff.jl, as it has better performance than ForwardDiff.jl on this example. See Turing.jl’s docs on Automatic Differentiation for more info.
using Random, ReverseDiff
m_post = m | (y=df.y,)
chn = sample(Xoshiro(123456), m_post, NUTS(; adtype=AutoReverseDiff()), 1_000, progress=false)
┌ Info: Found initial step size
└ ϵ = 0.2
Chains MCMC chain (1000×33×1 Array{Float64, 3}):
Iterations = 501:1:1500
Number of chains = 1
Samples per chain = 1000
Wall duration = 152.45 seconds
Compute duration = 152.45 seconds
parameters = v, l, f_latent[1], f_latent[2], f_latent[3], f_latent[4], f_latent[5], f_latent[6], f_latent[7], f_latent[8], f_latent[9], f_latent[10], f_latent[11], f_latent[12], f_latent[13], f_latent[14], f_latent[15], f_latent[16], f_latent[17], f_latent[18], f_latent[19]
internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, max_hamiltonian_energy_error, tree_depth, numerical_error, step_size, nom_step_size
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ⋯
Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯
v 2.9156 1.3500 0.0471 888.9807 602.1180 0.9998 ⋯
l 3.6597 0.8239 0.0542 204.5560 181.5073 1.0022 ⋯
f_latent[1] 2.5427 0.0980 0.0031 976.8509 841.3983 1.0001 ⋯
f_latent[2] 1.7005 0.0680 0.0020 1159.1773 697.0767 1.0007 ⋯
f_latent[3] 0.9745 0.0782 0.0033 557.7282 696.2342 1.0014 ⋯
f_latent[4] 0.4800 0.0756 0.0026 885.5237 663.8774 1.0018 ⋯
f_latent[5] 0.1925 0.0778 0.0025 987.6531 661.5774 0.9995 ⋯
f_latent[6] -0.0136 0.0952 0.0046 432.1599 412.7216 0.9991 ⋯
f_latent[7] -0.2455 0.0876 0.0031 761.9793 545.9663 1.0007 ⋯
f_latent[8] -0.5048 0.0869 0.0031 775.3969 490.1728 0.9995 ⋯
f_latent[9] -0.7219 0.0959 0.0041 552.6868 565.7969 0.9998 ⋯
f_latent[10] -0.8629 0.0922 0.0036 649.0443 763.2700 0.9990 ⋯
f_latent[11] -0.9491 0.0923 0.0033 771.8466 597.0319 1.0026 ⋯
f_latent[12] -1.0394 0.1115 0.0042 694.0441 625.9025 1.0036 ⋯
f_latent[13] -1.1896 0.1189 0.0042 819.1409 609.3305 1.0007 ⋯
f_latent[14] -1.4028 0.1133 0.0040 815.2130 640.5742 1.0018 ⋯
f_latent[15] -1.6049 0.1162 0.0044 707.9191 627.7714 1.0017 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱
1 column and 4 rows omitted
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
v 1.0610 1.9583 2.6822 3.5928 5.9954
l 2.3171 3.1385 3.5154 4.0461 5.7650
f_latent[1] 2.3546 2.4762 2.5384 2.6043 2.7366
f_latent[2] 1.5710 1.6567 1.7007 1.7474 1.8308
f_latent[3] 0.8229 0.9203 0.9770 1.0285 1.1288
f_latent[4] 0.3316 0.4335 0.4843 0.5317 0.6223
f_latent[5] 0.0438 0.1411 0.1917 0.2408 0.3539
f_latent[6] -0.1982 -0.0776 -0.0141 0.0486 0.1723
f_latent[7] -0.4077 -0.3065 -0.2492 -0.1837 -0.0713
f_latent[8] -0.6685 -0.5595 -0.5041 -0.4463 -0.3391
f_latent[9] -0.9103 -0.7881 -0.7200 -0.6542 -0.5332
f_latent[10] -1.0388 -0.9249 -0.8638 -0.8013 -0.6808
f_latent[11] -1.1346 -1.0117 -0.9508 -0.8825 -0.7639
f_latent[12] -1.2519 -1.1170 -1.0424 -0.9591 -0.8230
f_latent[13] -1.4178 -1.2710 -1.1950 -1.1103 -0.9566
f_latent[14] -1.6482 -1.4767 -1.3980 -1.3272 -1.1679
f_latent[15] -1.8522 -1.6774 -1.6000 -1.5271 -1.3940
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
4 rows omitted
We can use these samples and the posterior
function from AbstractGPs
to sample from the posterior probability of success at any distance we choose:
d_pred = 1:0.2:21
samples = map(generated_quantities(m_post, chn)[1:10:end]) do x
return logistic.(rand(posterior(x.fx, x.f_latent)(d_pred, 1e-4)))
end
p = plot()
plot!(d_pred, reduce(hcat, samples); label="", color=:blue, alpha=0.2)
scatter!(df.distance, df.y ./ df.n; label="", color=:red)
We can see that the general trend is indeed down as the distance from the hole increases, and that if we move away from the data, the posterior uncertainty quickly inflates. This suggests that the model is probably going to do a reasonable job of interpolating between observed data, but less good a job at extrapolating to larger distances.