using Turing
using LinearAlgebra: I
using Random
@model function gdemo(n)
~ Normal(0, 1)
μ ~ MvNormal(fill(μ, n), I)
x end
gdemo (generic function with 2 methods)
The easiest way to manipulate and query Turing models is via the DynamicPPL probability interface.
Let’s use a simple model of normally-distributed data as an example.
using Turing
using LinearAlgebra: I
using Random
@model function gdemo(n)
μ ~ Normal(0, 1)
x ~ MvNormal(fill(μ, n), I)
end
gdemo (generic function with 2 methods)
We generate some data using μ = 0
:
5-element Vector{Float64}:
0.8488780584442736
-0.31936138249336765
-1.3982098801744465
-0.05198933163879332
-1.1465116601038348
Bayesian models can be transformed with two main operations, conditioning and deconditioning (also known as marginalization). Conditioning takes a variable and fixes its value as known. We do this by passing a model and a collection of conditioned variables to |
, or its alias, condition
:
# (equivalently)
# conditioned_model = condition(gdemo(length(dataset)), (x=dataset, μ=0))
conditioned_model = gdemo(length(dataset)) | (x=dataset, μ=0)
DynamicPPL.Model{typeof(gdemo), (:n,), (), (), Tuple{Int64}, Tuple{}, DynamicPPL.ConditionContext{@NamedTuple{x::Vector{Float64}, μ::Int64}, DynamicPPL.DefaultContext}}(Main.Notebook.gdemo, (n = 100,), NamedTuple(), ConditionContext((x = [0.8488780584442736, -0.31936138249336765, -1.3982098801744465, -0.05198933163879332, -1.1465116601038348, -0.6306168227545849, 0.6862766694322289, -0.5485073478947856, -0.17212004616875684, 1.2883226251958486, -0.13661316034377538, 2.4316115122026973, 0.2251319215717449, -0.5115708179083417, -0.7810712258995324, -1.0191704692490737, 1.1210038448250719, -1.6944509713762377, -0.27314823183454695, 0.25273963222687423, 1.3914215917992434, 0.7525340831125464, 0.847154387311101, -0.7130402796655171, 0.2983575202861233, -0.1785631526879386, 0.08659477535701691, -0.5167265137098563, 2.111309740316035, 0.3957655443124509, -0.0804390853521051, 1.255042471667049, -0.07882822403959532, 1.2261373761992618, 0.43953618247769816, -0.40640013183427787, -0.6868635949523503, 1.7380713294668497, 0.13685965156352295, 0.1485185624825999, -0.7798816720822024, 2.2595105995080846, -0.13609014938597142, 0.22785777205259913, -2.1005250433485725, 0.44205288222935385, -1.238456637875994, -2.3727125492433427, -0.24406624959402184, -0.04488042525902438, 0.27510026183444175, 0.42472846594528796, 1.0337924022589282, 0.9126364433535069, -0.9006583845907805, 0.8665471057463393, 1.4924737539852484, 1.2886591566091432, 1.037264411147446, 1.4731954133339449, -0.31874662373651885, 1.2255399151799211, -1.6642044048811695, -0.5717328092786154, -1.2700237196779645, 0.5748199649058684, 0.16467729820692942, -1.195290550625328, -0.37133526877621703, -0.3018979982049836, -2.0183406292097397, -0.9588803575112745, 0.7177183994733006, -1.0133440177662316, -1.0881357990941283, 1.0487446580734279, 2.627227367991459, -1.59963908284846, -0.3122512299247273, -1.0265333654194488, 0.5557085182114885, -0.3206725445321106, -1.4314746067673778, 1.5740113510560039, -0.6566477752702335, 0.31342313477927125, 0.33135361418686027, -1.0489180508346863, -0.2670759024309527, 0.4683952221006179, 0.04918061587657951, 1.239814741442417, 2.2239462179369296, 1.8507671783064434, 1.756319462015174, -0.6577450354719728, 2.2795431083561626, -0.492273906928334, 0.7045614632761499, 0.11260553216111485], μ = 0), DynamicPPL.DefaultContext()))
This operation can be reversed by applying decondition
:
DynamicPPL.Model{typeof(gdemo), (:n,), (), (), Tuple{Int64}, Tuple{}, DynamicPPL.DefaultContext}(Main.Notebook.gdemo, (n = 100,), NamedTuple(), DynamicPPL.DefaultContext())
We can also decondition only some of the variables:
DynamicPPL.Model{typeof(gdemo), (:n,), (), (), Tuple{Int64}, Tuple{}, DynamicPPL.ConditionContext{@NamedTuple{x::Vector{Float64}}, DynamicPPL.DefaultContext}}(Main.Notebook.gdemo, (n = 100,), NamedTuple(), ConditionContext((x = [0.8488780584442736, -0.31936138249336765, -1.3982098801744465, -0.05198933163879332, -1.1465116601038348, -0.6306168227545849, 0.6862766694322289, -0.5485073478947856, -0.17212004616875684, 1.2883226251958486, -0.13661316034377538, 2.4316115122026973, 0.2251319215717449, -0.5115708179083417, -0.7810712258995324, -1.0191704692490737, 1.1210038448250719, -1.6944509713762377, -0.27314823183454695, 0.25273963222687423, 1.3914215917992434, 0.7525340831125464, 0.847154387311101, -0.7130402796655171, 0.2983575202861233, -0.1785631526879386, 0.08659477535701691, -0.5167265137098563, 2.111309740316035, 0.3957655443124509, -0.0804390853521051, 1.255042471667049, -0.07882822403959532, 1.2261373761992618, 0.43953618247769816, -0.40640013183427787, -0.6868635949523503, 1.7380713294668497, 0.13685965156352295, 0.1485185624825999, -0.7798816720822024, 2.2595105995080846, -0.13609014938597142, 0.22785777205259913, -2.1005250433485725, 0.44205288222935385, -1.238456637875994, -2.3727125492433427, -0.24406624959402184, -0.04488042525902438, 0.27510026183444175, 0.42472846594528796, 1.0337924022589282, 0.9126364433535069, -0.9006583845907805, 0.8665471057463393, 1.4924737539852484, 1.2886591566091432, 1.037264411147446, 1.4731954133339449, -0.31874662373651885, 1.2255399151799211, -1.6642044048811695, -0.5717328092786154, -1.2700237196779645, 0.5748199649058684, 0.16467729820692942, -1.195290550625328, -0.37133526877621703, -0.3018979982049836, -2.0183406292097397, -0.9588803575112745, 0.7177183994733006, -1.0133440177662316, -1.0881357990941283, 1.0487446580734279, 2.627227367991459, -1.59963908284846, -0.3122512299247273, -1.0265333654194488, 0.5557085182114885, -0.3206725445321106, -1.4314746067673778, 1.5740113510560039, -0.6566477752702335, 0.31342313477927125, 0.33135361418686027, -1.0489180508346863, -0.2670759024309527, 0.4683952221006179, 0.04918061587657951, 1.239814741442417, 2.2239462179369296, 1.8507671783064434, 1.756319462015174, -0.6577450354719728, 2.2795431083561626, -0.492273906928334, 0.7045614632761499, 0.11260553216111485],), DynamicPPL.DefaultContext()))
We can see which of the variables in a model have been conditioned with DynamicPPL.conditioned
:
(x = [0.8488780584442736, -0.31936138249336765, -1.3982098801744465, -0.05198933163879332, -1.1465116601038348, -0.6306168227545849, 0.6862766694322289, -0.5485073478947856, -0.17212004616875684, 1.2883226251958486 … 0.04918061587657951, 1.239814741442417, 2.2239462179369296, 1.8507671783064434, 1.756319462015174, -0.6577450354719728, 2.2795431083561626, -0.492273906928334, 0.7045614632761499, 0.11260553216111485],)
Sometimes it is helpful to define convenience functions for conditioning on some variable(s). For instance, in this example we might want to define a version of gdemo
that conditions on some observations of x
:
For illustrative purposes, however, we do not use this function in the examples below.
We often want to calculate the (unnormalized) probability density for an event. This probability might be a prior, a likelihood, or a posterior (joint) density. DynamicPPL provides convenient functions for this. To begin, let’s define a model gdemo
, condition it on a dataset, and draw a sample. The returned sample only contains μ
, since the value of x
has already been fixed:
(μ = -0.6680014719649068,)
We can then calculate the joint probability of a set of samples (here drawn from the prior) with logjoint
.
For models with many variables rand(model)
can be prohibitively slow since it returns a NamedTuple
of samples from the prior distribution of the unconditioned variables. We recommend working with samples of type DataStructures.OrderedDict
in this case:
OrderedDict{Any, Any} with 1 entry:
μ => -0.668001
logjoint
can also be used on this sample:
The prior probability and the likelihood of a set of samples can be calculated with the functions logprior
and loglikelihood
respectively. The log joint probability is the sum of these two quantities:
To give an example of the probability interface in use, we can use it to estimate the performance of our model using cross-validation. In cross-validation, we split the dataset into several equal parts. Then, we choose one of these sets to serve as the validation set. Here, we measure fit using the cross entropy (Bayes loss).1 (For the sake of simplicity, in the following code, we enforce that nfolds
must divide the number of data points. For a more competent implementation, see MLUtils.jl.)
# Calculate the train/validation splits across `nfolds` partitions, assume `length(dataset)` divides `nfolds`
function kfolds(dataset::Array{<:Real}, nfolds::Int)
fold_size, remaining = divrem(length(dataset), nfolds)
if remaining != 0
error("The number of folds must divide the number of data points.")
end
first_idx = firstindex(dataset)
last_idx = lastindex(dataset)
splits = map(0:(nfolds - 1)) do i
start_idx = first_idx + i * fold_size
end_idx = start_idx + fold_size
train_set_indices = [first_idx:(start_idx - 1); end_idx:last_idx]
return (view(dataset, train_set_indices), view(dataset, start_idx:(end_idx - 1)))
end
return splits
end
function cross_val(
dataset::Vector{<:Real};
nfolds::Int=5,
nsamples::Int=1_000,
rng::Random.AbstractRNG=Random.default_rng(),
)
# Initialize `loss` in a way such that the loop below does not change its type
model = gdemo(1) | (x=[first(dataset)],)
loss = zero(logjoint(model, rand(rng, model)))
for (train, validation) in kfolds(dataset, nfolds)
# First, we train the model on the training set, i.e., we obtain samples from the posterior.
# For normally-distributed data, the posterior can be computed in closed form.
# For general models, however, typically samples will be generated using MCMC with Turing.
posterior = Normal(mean(train), 1)
samples = rand(rng, posterior, nsamples)
# Evaluation on the validation set.
validation_model = gdemo(length(validation)) | (x=validation,)
loss += sum(samples) do sample
logjoint(validation_model, (μ=sample,))
end
end
return loss
end
cross_val(dataset)
-212760.30282411768
See ParetoSmooth.jl for a faster and more accurate implementation of cross-validation than the one provided here.↩︎