using Turing
using Distributions
using StatsPlots
using Random
using LinearAlgebra
Random.seed!(123)
# Disable progress bars for cleaner output
setprogress!(false) Turing.
[ Info: [Turing]: progress logging is disabled globally
false
Turing.jl provides stochastic gradient-based MCMC samplers: Stochastic Gradient Langevin Dynamics (SGLD) and Stochastic Gradient Hamiltonian Monte Carlo (SGHMC).
The current implementation in Turing.jl is primarily useful for: - Research purposes: Studying stochastic gradient MCMC methods - Streaming data: When data arrives continuously - Experimental applications: Testing stochastic sampling approaches
Important: The current implementation computes full gradients with added stochastic noise rather than true mini-batch stochastic gradients. This means these samplers don’t currently provide the computational benefits typically associated with stochastic gradient methods for large datasets. They require very careful hyperparameter tuning and often perform slower than standard samplers like HMC or NUTS for most practical applications.
SGLD adds properly scaled noise to gradient descent steps to enable MCMC sampling. The key insight is that the right amount of noise transforms optimization into sampling from the posterior distribution.
Let’s start with a simple Gaussian model:
# Generate synthetic data
true_μ = 2.0
true_σ = 1.5
N = 100
data = rand(Normal(true_μ, true_σ), N)
# Define a simple Gaussian model
@model function gaussian_model(x)
μ ~ Normal(0, 10)
σ ~ truncated(Normal(0, 5); lower=0)
for i in 1:length(x)
x[i] ~ Normal(μ, σ)
end
end
model = gaussian_model(data)
DynamicPPL.Model{typeof(gaussian_model), (:x,), (), (), Tuple{Vector{Float64}}, Tuple{}, DynamicPPL.DefaultContext}(gaussian_model, (x = [3.21243189269745, 0.31689123782873996, 0.3430458465060562, 1.3745110472525999, 2.431381970935784, 2.3447280470778016, 1.367347003400461, -0.033385931651795486, 2.1041887116378404, 1.82401579320378 … 1.9524391544746311, 2.6525022164657783, 3.260442669093176, 2.5685766805908874, 1.837062568926331, 0.9818378577483255, 0.3676722290955695, 3.0556374886884523, 2.2149888398562707, 2.222563050014123],), NamedTuple(), DynamicPPL.DefaultContext())
SGLD requires very small step sizes to ensure stability. We use a PolynomialStepsize
that decreases over time. Note: Currently, PolynomialStepsize
is the primary stepsize schedule available in Turing for SGLD:
# SGLD with polynomial stepsize schedule
# stepsize(t) = a / (b + t)^γ
sgld_stepsize = Turing.PolynomialStepsize(0.0001, 10000, 0.55)
chain_sgld = sample(model, SGLD(stepsize=sgld_stepsize), 5000)
summarystats(chain_sgld)
Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ μ -17.0516 0.0458 0.0143 10.8065 19.3314 2.1228 ⋯ σ 6.5796 2.0641 0.6402 10.5632 18.3607 2.1230 ⋯ 1 column omitted
SGHMC extends HMC to the stochastic gradient setting by incorporating friction to counteract the noise from stochastic gradients:
# SGHMC with very small learning rate
chain_sghmc = sample(model, SGHMC(learning_rate=0.00001, momentum_decay=0.1), 5000)
summarystats(chain_sghmc)
Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ μ 2.0993 0.5436 0.1510 13.5879 18.3607 1.1960 ⋯ σ 2.5895 16.1407 1.2293 20.7905 18.4349 1.1225 ⋯ 1 column omitted
For comparison, let’s sample the same model using standard HMC:
chain_hmc = sample(model, HMC(0.01, 10), 1000)
println("True values: μ = ", true_μ, ", σ = ", true_σ)
summarystats(chain_hmc)
True values: μ = 2.0, σ = 1.5
Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ μ -5.9663 0.0000 0.0000 NaN NaN NaN ⋯ σ 0.2069 0.0000 0.0000 NaN NaN NaN ⋯ 1 column omitted
Compare the trace plots to see how the different samplers explore the posterior:
p1 = plot(chain_sgld[:μ], label="SGLD", title="μ parameter traces")
hline!([true_μ], label="True value", linestyle=:dash, color=:red)
p2 = plot(chain_sghmc[:μ], label="SGHMC")
hline!([true_μ], label="True value", linestyle=:dash, color=:red)
p3 = plot(chain_hmc[:μ], label="HMC")
hline!([true_μ], label="True value", linestyle=:dash, color=:red)
plot(p1, p2, p3, layout=(3,1), size=(800,600))
The comparison shows that: - SGLD exhibits slower convergence and higher variance due to the injected noise, requiring longer chains to achieve stable estimates - SGHMC shows slightly better mixing than SGLD due to the momentum term, but still requires careful tuning - HMC converges quickly and efficiently explores the posterior, demonstrating why it’s preferred for small to medium-sized problems
Here’s a more complex example using Bayesian linear regression:
# Generate regression data
n_features = 3
n_samples = 100
X = randn(n_samples, n_features)
true_β = [0.5, -1.2, 2.1]
true_σ_noise = 0.3
y = X * true_β + true_σ_noise * randn(n_samples)
@model function linear_regression(X, y)
n_features = size(X, 2)
# Priors
β ~ MvNormal(zeros(n_features), 3 * I)
σ ~ truncated(Normal(0, 1); lower=0)
# Likelihood
y ~ MvNormal(X * β, σ^2 * I)
end
lr_model = linear_regression(X, y)
DynamicPPL.Model{typeof(linear_regression), (:X, :y), (), (), Tuple{Matrix{Float64}, Vector{Float64}}, Tuple{}, DynamicPPL.DefaultContext}(linear_regression, (X = [-0.08993884887496832 1.2694180094557772 -0.45068406344161077; -0.23528025045836815 -1.0348870573833149 -1.2512585407119565; … ; -0.5815563239702138 -0.19790550383157401 -0.7201291845682822; 0.29678442882680006 0.6426754256642815 -0.8729317283503407], y = [-2.5001125493734633, -1.3582233483639436, -3.8825717018806856, -0.2345200635330288, 1.4937176261849854, 2.8659122069995644, -0.5833355856450775, 4.642283548210101, 0.14909888834210028, 1.3335900592696839 … 5.9741160301704, -1.5777125963436005, 3.9896734979440236, -1.0204264890982526, -1.6606828145645047, 1.76720805427176, -0.20620159329470383, -1.9121131995245513, -0.9431065705584871, -2.3648743995748114]), NamedTuple(), DynamicPPL.DefaultContext())
Sample using the stochastic gradient methods:
# Very conservative parameters for stability
sgld_lr_stepsize = Turing.PolynomialStepsize(0.00005, 10000, 0.55)
chain_lr_sgld = sample(lr_model, SGLD(stepsize=sgld_lr_stepsize), 5000)
chain_lr_sghmc = sample(lr_model, SGHMC(learning_rate=0.00005, momentum_decay=0.1), 5000)
chain_lr_hmc = sample(lr_model, HMC(0.01, 10), 1000)
Chains MCMC chain (1000×14×1 Array{Float64, 3}): Iterations = 1:1:1000 Number of chains = 1 Samples per chain = 1000 Wall duration = 1.52 seconds Compute duration = 1.52 seconds parameters = β[1], β[2], β[3], σ internals = lp, n_steps, is_accept, acceptance_rate, log_density, hamiltonian_energy, hamiltonian_energy_error, numerical_error, step_size, nom_step_size Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ β[1] 0.4978 0.1697 0.0502 41.6343 12.4475 1.0211 ⋯ β[2] -1.1118 0.2820 0.0775 47.3436 12.2657 1.0143 ⋯ β[3] 1.7880 1.4977 0.4645 38.1562 12.2549 1.0595 ⋯ σ 0.6152 1.1602 0.3603 39.1620 12.2561 1.0191 ⋯ 1 column omitted Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 β[1] 0.4014 0.4409 0.4600 0.4798 1.1463 β[2] -1.2268 -1.1908 -1.1716 -1.1504 0.0196 β[3] -4.5180 2.1310 2.1603 2.1863 2.2384 σ 0.2811 0.3083 0.3248 0.3442 5.6003
Compare the results to evaluate the performance of stochastic gradient samplers on a more complex model:
println("True β values: ", true_β)
println("True σ value: ", true_σ_noise)
println()
println("SGLD estimates:")
summarystats(chain_lr_sgld)
True β values: [0.5, -1.2, 2.1]
True σ value: 0.3
SGLD estimates:
Summary Statistics parameters mean std mcse ess_bulk ess_tail rhat e ⋯ Symbol Float64 Float64 Float64 Float64 Float64 Float64 ⋯ β[1] 1.4193 0.0092 0.0026 13.7923 33.1792 1.1167 ⋯ β[2] -0.1851 0.0195 0.0060 11.5311 25.2985 1.4079 ⋯ β[3] -0.1172 0.0220 0.0068 10.8609 20.7479 1.9659 ⋯ σ 1.4488 0.0931 0.0291 10.6692 19.4335 2.0535 ⋯ 1 column omitted
The linear regression example demonstrates that stochastic gradient samplers can recover the true parameters, but: - They require significantly longer chains (5000 vs 1000 for HMC) - The estimates may have higher variance - Convergence diagnostics should be carefully examined before trusting the results
Both samplers support different AD backends. For more information about automatic differentiation in Turing, see the Automatic Differentiation documentation.
using ADTypes
# ForwardDiff (default) - good for few parameters
sgld_forward = SGLD(stepsize=sgld_stepsize, adtype=AutoForwardDiff())
# ReverseDiff - better for many parameters
sgld_reverse = SGLD(stepsize=sgld_stepsize, adtype=AutoReverseDiff())
# Zygote - good for complex models
sgld_zygote = SGLD(stepsize=sgld_stepsize, adtype=AutoZygote())
SGLD{AutoZygote, PolynomialStepsize{Float64}}(PolynomialStepsize{Float64}(0.0001, 10000.0, 0.55), AutoZygote())
For SGLD: - Use PolynomialStepsize
with very small initial values (≤ 0.0001) - Larger b
values in PolynomialStepsize(a, b, γ)
provide more stability - The stepsize decreases as a / (b + t)^γ
For SGHMC: - Use extremely small learning rates (≤ 0.00001) - Momentum decay (friction) typically between 0.1-0.5 - Higher momentum decay improves stability but slows convergence
Stochastic gradient samplers in Turing.jl provide an interface to gradient-based MCMC methods with added stochasticity. While designed for large-scale problems, the current implementation uses full gradients, making them primarily useful for research or specialized applications. For most practical Bayesian inference tasks, standard samplers like HMC or NUTS will be more efficient and easier to tune.