General Usage
This package implements the AbstractMCMC
interface. AbstractMCMC
provides a unifying interface for MCMC algorithms applied to LogDensityProblems.
Examples
Drawing Samples From a LogDensityProblems
Through AbstractMCMC
SliceSampling.jl
implements the AbstractMCMC
interface through LogDensityProblems
. That is, one simply needs to define a LogDensityProblems
and pass it to AbstractMCMC
:
using AbstractMCMC
using Distributions
using LinearAlgebra
using LogDensityProblems
using Plots
using SliceSampling
struct Target{D}
dist::D
end
LogDensityProblems.logdensity(target::Target, x) = logpdf(target.dist, x)
LogDensityProblems.dimension(target::Target) = length(target.distx)
LogDensityProblems.capabilities(::Type{<:Target}) = LogDensityProblems.LogDensityOrder{0}()
sampler = GibbsPolarSlice(2.0)
n_samples = 10000
model = Target(MvTDist(5, zeros(10), Matrix(I, 10, 10)))
logdensitymodel = AbstractMCMC.LogDensityModel(model)
chain = sample(logdensitymodel, sampler, n_samples; initial_params=randn(10))
samples = hcat([transition.params for transition in chain]...)
plot(samples[1,:], xlabel="Iteration", ylabel="Trace")
savefig("abstractmcmc_demo.svg")
"/home/runner/work/SliceSampling.jl/SliceSampling.jl/docs/build/abstractmcmc_demo.svg"
Drawing Samples From Turing
Models
SliceSampling.jl
can also be used to sample from Turing models through Turing
's externalsampler
interface:
using Distributions
using Turing
using SliceSampling
@model function demo()
s ~ InverseGamma(3, 3)
m ~ Normal(0, sqrt(s))
end
sampler = RandPermGibbs(SliceSteppingOut(2.))
n_samples = 10000
model = demo()
chain = sample(model, externalsampler(sampler), n_samples; progress=false)
describe(chain)
Chains MCMC chain (10000×5×1 Array{Float64, 3}):
Iterations = 1:1:10000
Number of chains = 1
Samples per chain = 10000
Wall duration = 4.61 seconds
Compute duration = 4.61 seconds
parameters = s, m
internals = lp, logprior, loglikelihood
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float64 Float64 Float64 Float64 Float64 Float64 Float64
s 1.4865 1.3636 0.0210 5938.4449 5123.6205 1.0000 1289.2846
m 0.0164 1.1855 0.0124 9162.9357 6392.6739 1.0002 1989.3477
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
s 0.4211 0.7629 1.1140 1.7232 4.9784
m -2.3505 -0.6941 0.0328 0.7377 2.3454
Conditional sampling in a Turing.Gibbs
sampler
SliceSampling.jl
be used as a conditional sampler in Turing.Gibbs
.
using Distributions
using Turing
using SliceSampling
@model function simple_choice(xs)
p ~ Beta(2, 2)
z ~ Bernoulli(p)
for i in 1:length(xs)
if z == 1
xs[i] ~ Normal(0, 1)
else
xs[i] ~ Normal(2, 1)
end
end
end
sampler = Turing.Gibbs(
:p => externalsampler(SliceSteppingOut(2.0)),
:z => PG(20),
)
n_samples = 1000
model = simple_choice([1.5, 2.0, 0.3])
chain = sample(model, sampler, n_samples; progress=false)
describe(chain)
Chains MCMC chain (1000×5×1 Array{Float64, 3}):
Iterations = 1:1:1000
Number of chains = 1
Samples per chain = 1000
Wall duration = 29.23 seconds
Compute duration = 29.23 seconds
parameters = p, z
internals = lp, logprior, loglikelihood
Summary Statistics
parameters mean std mcse ess_bulk ess_tail rhat ess_per_sec
Symbol Float64 Float64 Float64 Float64 Float64 Float64 Float64
p 0.4356 0.2110 0.0073 846.4987 603.4851 1.0058 28.9629
z 0.1570 0.3640 0.0134 733.5490 NaN 0.9990 25.0983
Quantiles
parameters 2.5% 25.0% 50.0% 75.0% 97.5%
Symbol Float64 Float64 Float64 Float64 Float64
p 0.0733 0.2712 0.4327 0.5885 0.8342
z 0.0000 0.0000 0.0000 0.0000 1.0000
Drawing Samples
For drawing samples using the algorithms provided by SliceSampling
, the user only needs to call:
sample([rng,] model, slice, N; initial_params)
slice::AbstractSliceSampling
: Any slice sampling algorithm provided bySliceSampling
.model
: A model implementing theLogDensityProblems
interface.N
: The number of samples
The output is a SliceSampling.Transition
object, which contains the following:
SliceSampling.Transition
— Typestruct Transition
Struct containing the results of the transition.
Fields
params
: Samples generated by the transition.lp::Real
: Log-target density of the samples.info::NamedTuple
: Named tuple containing information about the transition.
For the keyword arguments, SliceSampling
allows:
initial_params
: The intial state of the Markov chain (default:nothing
).
If initial_params
is nothing
, the following function can be implemented to provide an initialization:
SliceSampling.initial_sample
— Functioninitial_sample(rng, model)
Return the initial sample for the model
using the random number generator rng
.
Arguments
rng::Random.AbstractRNG
: Random number generator.model
: The targetLogDensityProblem
.
Performing a Single Transition
For more fined-grained control, the user can call AbstractMCMC.step
. That is, the chain can be initialized by calling:
transition, state = AbstractMCMC.steps([rng,] model, slice; initial_params)
and then each MCMC transition on state
can be performed by calling:
transition, state = AbstractMCMC.steps([rng,] model, slice, state)
For more details, refer to the documentation of AbstractMCMC
.