Posterior statistics
The methods listed below are defined in src/stats.jl
.
StatsBase.autocor
— Functionautocor(chains[; lags = [1, 5, 10, 50], demean = true, append_chains = true, kwargs...])
Compute the autocorrelation of each parameter for the chain.
Setting append_chains=false
will return a vector of dataframes containing the autocorrelations for each chain.
DataAPI.describe
— Functiondescribe(io, chains[;
q = [0.025, 0.25, 0.5, 0.75, 0.975],
etype = :bm,
kwargs...])
Print the summary statistics and quantiles for the chain.
Statistics.mean
— Functionmean(chains[, params; kwargs...])
Calculate the mean of a chain.
StatsBase.summarystats
— Functionfunction summarystats(
chains;
sections = _default_sections(chains),
append_chains= true,
method::AbstractESSMethod = ESSMethod(),
maxlag = 250,
etype = :bm,
kwargs...
)
Compute the mean, standard deviation, naive standard error, Monte Carlo standard error, and effective sample size for each parameter in the chain.
Setting append_chains=false
will return a vector of dataframes containing the summary statistics for each chain.
When estimating the effective sample size, autocorrelations are computed for at most maxlag
lags.
Statistics.quantile
— Functionquantile(chains[; q = [0.025, 0.25, 0.5, 0.75, 0.975], append_chains = true, kwargs...])
Compute the quantiles for each parameter in the chain.
Setting append_chains=false
will return a vector of dataframes containing the quantiles for each chain.