Getting started
Chains type
MCMCChains.Chains
— TypeChains
Parameters:
value
: AnAxisArray
object with axesiter
×var
×chains
logevidence
: A field containing the logevidence.name_map
: ANamedTuple
mapping each variable to a section.info
: ANamedTuple
containing miscellaneous information relevant to the chain.
The info
field can be set using setinfo(c::Chains, n::NamedTuple)
.
Indexing and parameter Names
Chains can be constructed with parameter names. For example, to create a chains object with
- 500 samples,
- 2 parameters (named
a
andb
) - 3 chains
use
val = rand(500, 2, 3)
chn = Chains(val, [:a, :b])
Chains MCMC chain (500×2×3 Array{Float64, 3}): Iterations = 1:500 Thinning interval = 1 Chains = 1, 2, 3 Samples per chain = 500 parameters = a, b Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 a 0.4962 0.2906 0.0075 0.0065 1235.9560 0.9994 b 0.4932 0.2883 0.0074 0.0062 1409.4492 0.9989 Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 a 0.0302 0.2356 0.4861 0.7590 0.9729 b 0.0221 0.2452 0.4831 0.7434 0.9728
By default, parameters will be given the name param_i
, where i
is the parameter number:
chn = Chains(rand(100, 2, 2))
Chains MCMC chain (100×2×2 Array{Float64, 3}): Iterations = 1:100 Thinning interval = 1 Chains = 1, 2 Samples per chain = 100 parameters = param_1, param_2 Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 param_1 0.5009 0.2875 0.0203 0.0063 222.4027 0.9923 param_2 0.5089 0.2832 0.0200 0.0190 224.7700 0.9967 Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 param_1 0.0151 0.2510 0.5056 0.7440 0.9477 param_2 0.0352 0.2769 0.5048 0.7558 0.9515
We can set and get indexes for parameter 2:
chn_param2 = chn[1:5,2,:];
2-dimensional AxisArray{Float64,2,...} with axes: :iter, 1:1:5 :chain, 1:2 And data, a 5×2 Matrix{Float64}: 0.0167485 0.601748 0.945817 0.84651 0.84343 0.371065 0.163738 0.195013 0.416416 0.866167
chn[:,2,:] = fill(4, 100, 1, 2)
chn
Chains MCMC chain (100×2×2 Array{Float64, 3}): Iterations = 1:100 Thinning interval = 1 Chains = 1, 2 Samples per chain = 100 parameters = param_1, param_2 Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 param_1 0.5009 0.2875 0.0203 0.0063 222.4027 0.9923 param_2 4.0000 0.0000 0.0000 0.0000 NaN NaN Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 param_1 0.0151 0.2510 0.5056 0.7440 0.9477 param_2 4.0000 4.0000 4.0000 4.0000 4.0000
Rename Parameters
Parameter names can be changed with the function replacenames
:
MCMCChains.replacenames
— Functionreplacenames(chains::Chains, dict::AbstractDict)
Replace parameter names by creating a new Chains
object that shares the same underlying data.
Examples
julia> chn = Chains(rand(100, 2, 2), ["one", "two"]);
julia> chn2 = replacenames(chn, "one" => "A");
julia> names(chn2)
2-element Vector{Symbol}:
:A
:two
julia> chn3 = replacenames(chn2, Dict("A" => "one", "two" => "B"));
julia> names(chn3)
2-element Vector{Symbol}:
:one
:B
Sections
Chains parameters are sorted into sections that represent groups of parameters, see MCMCChains.group
. By default, every chain contains a parameters
section, to which all unassigned parameters are assigned to. Chains can be assigned a named map during construction:
chn = Chains(rand(100, 4, 2), [:a, :b, :c, :d])
Chains MCMC chain (100×4×2 Array{Float64, 3}): Iterations = 1:100 Thinning interval = 1 Chains = 1, 2 Samples per chain = 100 parameters = a, b, c, d Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 a 0.5072 0.2901 0.0205 0.0084 208.1973 0.9918 b 0.5405 0.2757 0.0195 0.0077 191.8219 0.9928 c 0.4861 0.2925 0.0207 0.0015 202.8022 0.9978 d 0.5011 0.2662 0.0188 0.0240 241.3182 0.9989 Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 a 0.0296 0.2669 0.5043 0.7608 0.9777 b 0.0310 0.3093 0.5425 0.7917 0.9884 c 0.0153 0.2115 0.5185 0.7421 0.9679 d 0.0397 0.2821 0.4925 0.7177 0.9553
The MCMCChains.set_section
function returns a new Chains
object:
chn2 = set_section(chn, Dict(:internals => [:c, :d]))
Chains MCMC chain (100×4×2 Array{Float64, 3}): Iterations = 1:100 Thinning interval = 1 Chains = 1, 2 Samples per chain = 100 parameters = a, b internals = c, d Summary Statistics parameters mean std naive_se mcse ess rhat Symbol Float64 Float64 Float64 Float64 Float64 Float64 a 0.5072 0.2901 0.0205 0.0084 208.1973 0.9918 b 0.5405 0.2757 0.0195 0.0077 191.8219 0.9928 Quantiles parameters 2.5% 25.0% 50.0% 75.0% 97.5% Symbol Float64 Float64 Float64 Float64 Float64 a 0.0296 0.2669 0.5043 0.7608 0.9777 b 0.0310 0.3093 0.5425 0.7917 0.9884
Note that only a
and b
are being shown. You can explicity retrieve an array of the summary statistics and the quantiles of the :internals
section by calling describe(chn; sections = :internals)
, or of all variables with describe(chn; sections = nothing)
. Many functions such as MCMCChains.summarize
or MCMCChains.gelmandiag
support the sections
keyword argument.
Groups of parameters
You can access the names of all parameters in a chain
that belong to the group name
by using
MCMCChains.namesingroup
— Functionnamesingroup(chains::Chains, sym::Union{String,Symbol})
Return the names of all parameters in a chain that belong to the group sym
.
This is based on the MCMCChains convention that parameters with names of the form :sym[index]
belong to one group of parameters called :sym
.
If the chain contains a parameter of name :sym
it will be returned as well.
Example
julia> chn = Chains(rand(100, 2, 2), ["A[1]", "A[2]"]);
julia> namesingroup(chn, :A)
2-element Vector{Symbol}:
Symbol("A[1]")
Symbol("A[2]")
The get
Function
MCMCChains also provides a get
function designed to make it easier to access parameters:
val = rand(6, 3, 1)
chn = Chains(val, [:a, :b, :c]);
x = get(chn, :a)
(a = [0.726892202151076; 0.7897987447542649; … ; 0.7007065543867941; 0.28230852428601994],)
You can also access the variables via getproperty
:
x.a
2-dimensional AxisArray{Float64,2,...} with axes: :iter, 1:1:6 :chain, 1:1 And data, a 6×1 Matrix{Float64}: 0.726892202151076 0.7897987447542649 0.8764192497161967 0.4298823940662093 0.7007065543867941 0.28230852428601994
get
also accepts vectors of things to retrieve, so you can call
x = get(chn, [:a, :b])
(a = [0.726892202151076; 0.7897987447542649; … ; 0.7007065543867941; 0.28230852428601994], b = [0.5217728481429613; 0.516762893315768; … ; 0.06530586170606023; 0.7861388159619587],)
Saving and Loading Chains
Like any Julia object, a Chains
object can be saved using Serialization.serialize
and loaded back by Serialization.deserialize
as identical as possible. Note, however, that in general this process will not work if the reading and writing are done by different versions of Julia, or an instance of Julia with a different system image. You might want to consider JLSO for saving metadata such as the Julia version and the versions of all packages installed as well.
using Serialization
serialize("chain-file.jls", chn)
chn2 = deserialize("chain-file.jls")
Exporting Chains
A few utility export functions have been provided to convert Chains
objects to either an Array or a DataFrame:
chn = Chains(rand(3, 2, 2), [:a, :b])
Array(chn)
6×2 Matrix{Float64}: 0.0376467 0.285629 0.494245 0.669787 0.622376 0.442597 0.962889 0.574631 0.0843298 0.327158 0.709288 0.362666
Array(chn, [:parameters])
6×2 Matrix{Float64}: 0.0376467 0.285629 0.494245 0.669787 0.622376 0.442597 0.962889 0.574631 0.0843298 0.327158 0.709288 0.362666
By default chains are appended. This can be disabled by using the append_chains
keyword argument:
A = Array(chn, append_chains=false)
2-element Vector{Matrix{Float64}}: [0.03764674908160326 0.28562924993877314; 0.49424522608710353 0.6697872641396161; 0.622375581088799 0.44259717400617427] [0.9628890746643262 0.5746307472028429; 0.08432978813107983 0.3271577375512067; 0.7092878338443243 0.36266551726565144]
which will return a matrix for each chain. For example, for the second chain:
A[2]
3×2 Matrix{Float64}: 0.962889 0.574631 0.0843298 0.327158 0.709288 0.362666
Similarly, for DataFrames:
using DataFrames
DataFrame(chn)
iteration | chain | a | b | |
---|---|---|---|---|
Int64 | Int64 | Float64 | Float64 | |
1 | 1 | 1 | 0.0376467 | 0.285629 |
2 | 2 | 1 | 0.494245 | 0.669787 |
3 | 3 | 1 | 0.622376 | 0.442597 |
4 | 1 | 2 | 0.962889 | 0.574631 |
5 | 2 | 2 | 0.0843298 | 0.327158 |
6 | 3 | 2 | 0.709288 | 0.362666 |
See also ?DataFrame
and ?Array
for more help.
Sampling Chains
MCMCChains overloads several sample
methods as defined in StatsBase:
StatsBase.sample
— Methodsample(chn::Chains, [wv::AbstractWeights,] n; replace=true, kwargs...)
sample(rng::Random.AbstractRNG, chn::Chains, [wv::AbstractWeights,] n; kwargs...)
Sample n
samples from chn
; see also subset
. Optionally, the samples can be weighted using wv
. Here, kwargs
defaults to replace=true
and ordered=false
.
MCMCChains.subset
— Functionsubset(chn::Chains, samples)
Return a subset of samples.
See ?sample
for additional help on sampling. Alternatively, you can construct and sample from a kernel density estimator using KernelDensity.jl, see test/sampling_tests.jl.