StatsPlots.jl
MCMCChains implements many functions for plotting via StatsPlots.jl.
Simple example
The following simple example illustrates how to use Chain to visually summarize a MCMC simulation:
using MCMCChains
using StatsPlots
# Define the experiment
n_iter = 100
n_name = 3
n_chain = 2
# experiment results
val = randn(n_iter, n_name, n_chain) .+ [1, 2, 3]'
val = hcat(val, rand(1:2, n_iter, 1, n_chain))
# construct a Chains object
chn = Chains(val, [:A, :B, :C, :D])
# visualize the MCMC simulation results
plot(chn; size=(840, 600))
GKS: cannot open display - headless operation mode active
plot(chn, colordim = :parameter; size=(840, 400))
Note that the plot function takes the additional arguments described in the Plots.jl package.
Mixed density
plot(chn, seriestype = :mixeddensity)
Or, for all seriestypes, use the alternative shorthand syntax:
mixeddensity(chn)
Trace
plot(chn, seriestype = :traceplot)
traceplot(chn)
Running average
meanplot(chn)
Density
density(chn)
Histogram
histogram(chn)
Autocorrelation
autocorplot(chn)
Violin
Violin plots are similar to box plots but also show the probability density of the data at different values, smoothed by a kernel density estimator.
violinplot(chn) # Plotting parameter 1 across all chains
violinplot(chn, 1) # Plotting parameter 1 across all chains
violinplot(chn, :A) # Plotting a specific parameter across all chains
violinplot(chn, [:C, :B, :A]) # Plotting multiple specific parameters across all chains
violinplot(chn, 1, colordim = :parameter) # Plotting chain 1 across all parameters
violinplot(chn, show_boxplot = false) # Plotting all parameters without the inner boxplot
You can also aggregate (pool) samples from all chains for a given parameter by using append_chains = true
. This is useful when you want to visualize the overall posterior distribution without distinguishing between individual chains.
violinplot(chn, :A, append_chains = true) # Single parameter, all chains appended
violinplot(chn, append_chains = true) # All parameters, all chains appended
You can also use the plot
function with seriestype = :violinplot
or seriestype = :violin
plot(chn, seriestype = :violin)
Corner
corner(chn)
Energy Plot
The energy plot is a diagnostic tool for HMC-based samplers (like NUTS) that helps diagnose sampling efficiency by visualizing the energy and energy transition distributions. This plot requires that the chain contains the internal sampler statistics :hamiltonian_energy
and :hamiltonian_energy_error
.
# First, we generate a chain that includes the required sampler parameters.
n_iter = 1000
n_chain = 4
val_params = randn(n_iter, 2, n_chain)
val_energy = randn(n_iter, 1, n_chain) .+ 20
val_energy_error = randn(n_iter, 1, n_chain) .* 0.5
full_val = hcat(val_params, val_energy, val_energy_error)
parameter_names = [:a, :b, :hamiltonian_energy, :hamiltonian_energy_error]
section_map = (
parameters=[:a, :b],
internals=[:hamiltonian_energy, :hamiltonian_energy_error],
)
chn_energy = Chains(full_val, parameter_names, section_map)
# Generate the energy plot (default is a density plot).
energyplot(chn_energy)
# The plot can also be generated as a histogram.
energyplot(chn_energy, kind=:histogram)
For plotting multiple parameters, ridgeline, forest and caterpillar plots can be useful.
Ridgeline
ridgelineplot(chn, [:C, :B, :A])
Forest
forestplot(chn, [:C, :B, :A], hpd_val = [0.05, 0.15, 0.25])
Caterpillar
forestplot(chn, chn.name_map[:parameters], hpd_val = [0.05, 0.15, 0.25], ordered = true)
API
MCMCChains.energyplot
— Functionenergyplot(chains::Chains; kind=:density, kwargs...)
Generate an energy plot for the samples in chains
.
The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.
This plot is only available for chains that contain the :hamiltonian_energy
and :hamiltonian_energy_error
statistics in their :internals
section.
Keywords
kind::Symbol
(default::density
): The type of plot to generate. Can be:density
or:histogram
.
MCMCChains.energyplot!
— Functionenergyplot(chains::Chains; kind=:density, kwargs...)
Generate an energy plot for the samples in chains
.
The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.
This plot is only available for chains that contain the :hamiltonian_energy
and :hamiltonian_energy_error
statistics in their :internals
section.
Keywords
kind::Symbol
(default::density
): The type of plot to generate. Can be:density
or:histogram
.
energyplot(chains::Chains; kind=:density, kwargs...)
Generate an energy plot for the samples in chains
.
The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.
This plot is only available for chains that contain the :hamiltonian_energy
and :hamiltonian_energy_error
statistics in their :internals
section.
Keywords
kind::Symbol
(default::density
): The type of plot to generate. Can be:density
or:histogram
.
MCMCChains.ridgelineplot
— Functionridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a ridgeline plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
The following options are available:
fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.
MCMCChains.ridgelineplot!
— Functionridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a ridgeline plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
The following options are available:
fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.
ridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a ridgeline plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
The following options are available:
fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.
MCMCChains.forestplot
— Functionforestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a forest or caterpillar plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
ordered
(default:false
): Ifordered = false
, a forest plot is generated. Ifordered = true
, a caterpillar plot is generated.fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.
MCMCChains.forestplot!
— Functionforestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a forest or caterpillar plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
ordered
(default:false
): Ifordered = false
, a forest plot is generated. Ifordered = true
, a caterpillar plot is generated.fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.
forestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)
Generate a forest or caterpillar plot for the samples of the parameters params
in chains
.
By default, all parameters are plotted.
Keyword arguments
ordered
(default:false
): Ifordered = false
, a forest plot is generated. Ifordered = true
, a caterpillar plot is generated.fill_q
(default:false
) andfill_hpd
(default:true
): Fill the area below the curve in the quantiles interval (fill_q = true
) or the highest posterior density (HPD) interval (fill_hpd = true
). If bothfill_q = false
andfill_hpd = false
, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.show_mean
(default:true
) andshow_median
(default:true
): Plot a vertical line of the mean (show_mean = true
) or median (show_median = true
) of the posterior density estimate. If both options are set totrue
, both lines are plotted.show_qi
(default:false
) andshow_hpdi
(default:true
): Plot a quantile interval (show_qi = true
) or the largest HPD interval (show_hpdi = true
) at the bottom of each density plot. These options are mutually exclusive.q
(default:[0.1, 0.9]
): The two quantiles used for plotting iffill_q = true
orshow_qi = true
.hpd_val
(default:[0.05, 0.2]
): The complementary probability mass(es) of the highest posterior density intervals that are plotted iffill_hpd = true
orshow_hpdi = true
.