JuliaBUGS.BUGSPrimitives.dnormFunction
dnorm(μ, τ)

Returns an instance of Normal with mean $μ$ and standard deviation $\frac{1}{√τ}$.

\[p(x|μ,τ) = \sqrt{\frac{τ}{2π}} e^{-τ \frac{(x-μ)^2}{2}}\]

source
JuliaBUGS.BUGSPrimitives.dlogisFunction
dlogis(μ, τ)

Return an instance of Logistic with location parameter $μ$ and scale parameter $\frac{1}{√τ}$.

\[p(x|μ,τ) = \frac{\sqrt{τ} e^{-\sqrt{τ}(x-μ)}}{(1+e^{-\sqrt{τ}(x-μ)})^2}\]

source
JuliaBUGS.BUGSPrimitives.dtFunction
dt(μ, τ, ν)

If $μ = 0$ and $σ = 1$, the function returns an instance of TDist with $ν$ degrees of freedom, location $μ$, and scale $σ = \frac{1}{\sqrt{τ}}$. Otherwise, it returns an instance of TDistShiftedScaled.

\[p(x|ν,μ,σ) = \frac{Γ((ν+1)/2)}{Γ(ν/2) \sqrt{νπσ}} \left(1+\frac{1}{ν}\left(\frac{x-μ}{σ}\right)^2\right)^{-\frac{ν+1}{2}}\]

source
JuliaBUGS.BUGSPrimitives.TDistShiftedScaledType
TDistShiftedScaled(ν, μ, σ)

Student's t-distribution with $ν$ degrees of freedom, location $μ$, and scale $σ$.

This struct allows for a shift (determined by $μ$) and a scale (determined by $σ$) of the standard Student's t-distribution provided by the Distributions.jl package.

Only pdf and logpdf are implemented for this distribution.

See Also

TDist

source
JuliaBUGS.BUGSPrimitives.dflatFunction
dflat()

Returns an instance of Flat or TruncatedFlat if truncated.

Flat represents a flat (uniform) prior over the real line, which is an improper distribution. And TruncatedFlat represents a truncated version of the Flat distribution.

Only pdf, logpdf, minimum, and maximum are implemented for these Distributions.

When use in a model, the parameters always need to be initialized.

source
JuliaBUGS.BUGSPrimitives.dweibFunction
dweib(a, b)

Returns an instance of Weibull distribution object with shape parameter $a$ and scale parameter $\frac{1}{b}$.

The Weibull distribution is a common model for event times. The hazard or instantaneous risk of the event is $abx^{a-1}$. For $a < 1$ the hazard decreases with $x$; for $a > 1$ it increases. $a = 1$ results in the exponential distribution with constant hazard.

\[p(x|a,b) = abx^{a-1}e^{-b x^a}\]

source
JuliaBUGS.BUGSPrimitives.dgevFunction
dgev(μ, σ, η)

Returns an instance of GeneralizedExtremeValue with location $μ$, scale $σ$, and shape $η$.

\[p(x|μ,σ,η) = \frac{1}{σ} \left(1 + η \frac{x - μ}{σ}\right)^{-\frac{1}{η} - 1} e^{-\left(1 + η \frac{x - μ}{σ}\right)^{-\frac{1}{η}}}\]

where $\frac{η(x - μ)}{σ} > -1$.

source
JuliaBUGS.BUGSPrimitives.dfFunction
df(n, m, μ=0, τ=1)

Returns an instance of F-distribution object with $n$ and $m$ degrees of freedom, location $μ$, and scale $τ$. This function is only valid when $μ = 0$ and $τ = 1$,

\[p(x|n, m, μ, τ) = \frac{\Gamma\left(\frac{n+m}{2}\right)}{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{m}{2}\right)} \left(\frac{n}{m}\right)^{\frac{n}{2}} \sqrt{τ} \left(\sqrt{τ}(x - μ)\right)^{\frac{n}{2}-1} \left(1 + \frac{n \sqrt{τ}(x-μ)}{m}\right)^{-\frac{n+m}{2}}\]

where $\frac{n \sqrt{τ} (x - μ)}{m} > -1$.

source
JuliaBUGS.BUGSPrimitives.dmnormFunction
dmnorm(μ::AbstractVector, T::AbstractMatrix)

Returns an instance of Multivariate Normal with mean vector μ and covariance matrix $T^{-1}$.

\[p(x|μ,T) = (2π)^{-k/2} |T|^{1/2} e^{-1/2 (x-μ)' T (x-μ)}\]

where $k$ is the dimension of x.

source
JuliaBUGS.BUGSPrimitives.dmtFunction
dmt(μ::AbstractVector, T::AbstractMatrix, k)

Returns an instance of Multivariate T with mean vector $μ$, scale matrix $T^{-1}$, and $k$ degrees of freedom.

\[p(x|k,μ,Σ) = \frac{\Gamma((k+d)/2)}{\Gamma(k/2) (k\pi)^{p/2} |Σ|^{1/2}} \left(1 + \frac{1}{k} (x-μ)^T Σ^{-1} (x-μ)\right)^{-\frac{k+p}{2}}\]

where $p$ is the dimension of $x$.

source
JuliaBUGS.BUGSPrimitives.dwishFunction
dwish(R::AbstractMatrix, k)

Returns an instance of Wishart with $k$ degrees of freedom and the scale matrix $T^{-1}$.

\[p(X|R,k) = |R|^{k/2} |X|^{(k-p-1)/2} e^{-(1/2) tr(RX)} / (2^{kp/2} Γ_p(k/2))\]

where $p$ is the dimension of $X$, and it should be less than or equal to $k$.

source
JuliaBUGS.BUGSPrimitives.ddirichFunction
ddirich(θ::AbstractVector)

Return an instance of Dirichlet with parameters $θ_i$.

\[p(x|θ) = \frac{Γ(\sum θ)}{∏ Γ(θ)} ∏ x_i^{θ_i - 1}\]

where $\theta_i > 0, x_i \in [0, 1], \sum_i x_i = 1$

source
JuliaBUGS.BUGSPrimitives.dbinFunction
dbin(p, n)

Returns an instance of Binomial with number of trials n and success probability p.

\[p(x|n,p) = \binom{n}{x} p^x (1 - p)^{n-x}\]

end

where $\theta \in [0, 1], n \in \mathbb{Z}^+,$ and $x = 0, \ldots, n$.

source
JuliaBUGS.BUGSPrimitives.dhyperFunction
dhyper(n₁, n₂, m₁, ψ=1)

Returns an instance of Hypergeometric. This distribution is used when sampling without replacement from a population consisting of $n₁$ successes and $n₂$ failures, with $m₁$ being the number of trials or the sample size. The function currently only allows for $ψ = 1$.

\[p(x | n₁, n₂, m₁, \psi) = \frac{\binom{n₁}{x} \binom{n₂}{m₁ - x} \psi^x}{\sum_{i=u_0}^{u_1} \binom{n1}{i} \binom{n2}{m₁ - i} \psi^i}\]

where $u_0 = \max(0, m₁-n₂), u_1 = \min(n₁,m₁),$ and $u_0 \leq x \leq u_1$

source