Turing Logo Turing.jl
  • Get Started
  • Tutorials
  • Libraries

    • Modelling Languages
    • DynamicPPL
    • JuliaBUGS
    • TuringGLM
    • MCMC
    • AdvancedHMC
    • AbstractMCMC
    • ThermodynamicIntegration
    • AdvancedPS
    • SliceSampling
    • EllipticalSliceSampling
    • NestedSamplers
    • Diagnostics
    • MCMCChains
    • MCMCDiagnosticTools
    • ParetoSmooth
    • Gaussian Processes
    • AbstractGPs
    • KernelFunctions
    • ApproximateGPs
    • Bijectors
    • TuringCallbacks
    • TuringBenchmarkingDeprecated
  • News
  • Team
JuliaBUGS.jl
  • Home
  • Example
  • Modeling
    • Two Macros: @bugs & @model
    • @model Macro
    • of Type System
  • API
    • General
    • Functions
    • Distributions
  • Differences from Other BUGS Implementations
  • Pitfalls
  • Plotting
  • R Interface
  • For Developers
    • Parser
    • Source Code Generation
    • Implementation Tricks
    • Notes on BUGS Implementations
Version
  • R Interface
  • R Interface
GitHub

R Interface

Interoperation between Julia and R is very solid and simple to use.

Here are some very useful packages:

  • RCall.jl: interaction with R runtime.
  • RData.jl: reading and writing R data files.
  • DataFrames.jl: pandas and dplyr for Julia.
  • CSV.jl: CSV file reading and writing.
  • JSON.jl, JSON3.jl, Serde.jl: JSON file reading and writing.
« PlottingParser »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 1.14.1 on Thursday 14 August 2025. Using Julia version 1.11.6.