General Usage
Each VI algorithm provides the followings:
- Variational families supported by each VI algorithm.
- A variational objective corresponding to the VI algorithm. Note that each variational family is subject to its own constraints. Thus, please refer to the documentation of the variational inference algorithm of interest.
Optimizing a Variational Objective
After constructing a variational objective objective
and initializing a variational approximation, one can optimize objective
by calling optimize
:
AdvancedVI.optimize
— Functionoptimize(problem, objective, q_init, max_iter, objargs...; kwargs...)
Optimize the variational objective objective
targeting the problem problem
by estimating (stochastic) gradients.
The trainable parameters in the variational approximation are expected to be extractable through Optimisers.destructure
. This requires the variational approximation to be marked as a functor through Functors.@functor
.
Arguments
objective::AbstractVariationalObjective
: Variational Objective.q_init
: Initial variational distribution. The variational parameters must be extractable throughOptimisers.destructure
.max_iter::Int
: Maximum number of iterations.objargs...
: Arguments to be passed toobjective
.
Keyword Arguments
adtype::ADtypes.AbstractADType
: Automatic differentiation backend.optimizer::Optimisers.AbstractRule
: Optimizer used for inference. (Default:Adam
.)averager::AbstractAverager
: Parameter averaging strategy. (Default:NoAveraging()
)operator::AbstractOperator
: Operator applied to the parameters after each optimization step. (Default:IdentityOperator()
)rng::AbstractRNG
: Random number generator. (Default:Random.default_rng()
.)show_progress::Bool
: Whether to show the progress bar. (Default:true
.)callback
: Callback function called after every iteration. See further information below. (Default:nothing
.)prog
: Progress bar configuration. (Default:ProgressMeter.Progress(n_max_iter; desc="Optimizing", barlen=31, showspeed=true, enabled=prog)
.)state::NamedTuple
: Initial value for the internal state of optimization. Used to warm-start from the state of a previous run. (See the returned values below.)
Returns
averaged_params
: Variational parameters generated by the algorithm averaged according toaverager
.params
: Last variational parameters generated by the algorithm.stats
: Statistics gathered during optimization.state
: Collection of the final internal states of optimization. This can used later to warm-start from the last iteration of the corresponding run.
Callback
The callback function callback
has a signature of
callback(; stat, state, params, averaged_params, restructure, gradient)
The arguments are as follows:
stat
: Statistics gathered during the current iteration. The content will vary depending onobjective
.state
: Collection of the internal states used for optimization.params
: Variational parameters.averaged_params
: Variational parameters averaged according to the averaging strategy.restructure
: Function that restructures the variational approximation from the variational parameters. Callingrestructure(param)
reconstructs the variational approximation.gradient
: The estimated (possibly stochastic) gradient.
callback
can return a NamedTuple
containing some additional information computed within cb
. This will be appended to the statistic of the current corresponding iteration. Otherwise, just return nothing
.
Estimating the Objective
In some cases, it is useful to directly estimate the objective value. This can be done by the following funciton:
AdvancedVI.estimate_objective
— Functionestimate_objective([rng,] obj, q, prob; kwargs...)
Estimate the variational objective obj
targeting prob
with respect to the variational approximation q
.
Arguments
rng::Random.AbstractRNG
: Random number generator.obj::AbstractVariationalObjective
: Variational objective.prob
: The target log-joint likelihood implementing theLogDensityProblem
interface.q
: Variational approximation.
Keyword Arguments
Depending on the objective, additional keyword arguments may apply. Please refer to the respective documentation of each variational objective for more info.
Returns
obj_est
: Estimate of the objective value.
Note that estimate_objective
is not expected to be differentiated through, and may not result in optimal statistical performance.
Advanced Usage
Each variational objective is a subtype of the following abstract type:
AdvancedVI.AbstractVariationalObjective
— TypeAbstractVariationalObjective
Abstract type for the VI algorithms supported by AdvancedVI
.
Implementations
To be supported by AdvancedVI
, a VI algorithm must implement AbstractVariationalObjective
and estimate_objective
. Also, it should provide gradients by implementing the function estimate_gradient!
. If the estimator is stateful, it can implement init
to initialize the state.
Furthermore, AdvancedVI
only interacts with each variational objective by querying gradient estimates. Therefore, to create a new custom objective to be optimized through AdvancedVI
, it suffices to implement the following function:
AdvancedVI.estimate_gradient!
— Functionestimate_gradient!(rng, obj, adtype, out, prob, params, restructure, obj_state)
Estimate (possibly stochastic) gradients of the variational objective obj
targeting prob
with respect to the variational parameters λ
Arguments
rng::Random.AbstractRNG
: Random number generator.obj::AbstractVariationalObjective
: Variational objective.adtype::ADTypes.AbstractADType
: Automatic differentiation backend.out::DiffResults.MutableDiffResult
: Buffer containing the objective value and gradient estimates.prob
: The target log-joint likelihood implementing theLogDensityProblem
interface.params
: Variational parameters to evaluate the gradient on.restructure
: Function that reconstructs the variational approximation fromparams
.obj_state
: Previous state of the objective.
Returns
out::MutableDiffResult
: Buffer containing the objective value and gradient estimates.obj_state
: The updated state of the objective.stat::NamedTuple
: Statistics and logs generated during estimation.
If an objective needs to be stateful, one can implement the following function to inialize the state.
AdvancedVI.init
— Functioninit(rng, obj, adtype, prob, params, restructure)
Initialize a state of the variational objective obj
given the initial variational parameters λ
. This function needs to be implemented only if obj
is stateful.
Arguments
rng::Random.AbstractRNG
: Random number generator.obj::AbstractVariationalObjective
: Variational objective.
adtype::ADTypes.AbstractADType`: Automatic differentiation backend.
params
: Initial variational parameters.restructure
: Function that reconstructs the variational approximation fromλ
.
init(avg, params)
Initialize the state of the averaging strategy avg
with the initial parameters params
.
Arguments
avg::AbstractAverager
: Averaging strategy.params
: Initial variational parameters.