Turing Logo Turing.jl
  • Get Started
  • Tutorials
  • Libraries

    • Modelling Languages
    • DynamicPPL
    • JuliaBUGS
    • TuringGLM
    • MCMC
    • AdvancedHMC
    • AbstractMCMC
    • ThermodynamicIntegration
    • AdvancedPS
    • SliceSampling
    • EllipticalSliceSampling
    • NestedSamplers
    • Diagnostics
    • MCMCChains
    • MCMCDiagnosticTools
    • ParetoSmooth
    • Gaussian Processes
    • AbstractGPs
    • KernelFunctions
    • ApproximateGPs
    • Bijectors
    • TuringCallbacks
    • TuringBenchmarking Deprecated
  • News
  • Team
github [#142] Created with Sketch. ☰
AdvancedVI.jl
  • AdvancedVI
    • Introduction
    • Provided Algorithms
  • General Usage
  • Examples
  • ELBO Maximization
    • Overview
    • Reparameterization Gradient Estimator
  • Variational Families
  • Optimization
Version
  • AdvancedVI
  • AdvancedVI


AdvancedVI

Introduction

AdvancedVI provides implementations of variational Bayesian inference (VI) algorithms. VI algorithms perform scalable and computationally efficient Bayesian inference at the cost of asymptotic exactness. AdvancedVI is part of the Turing probabilistic programming ecosystem.

Provided Algorithms

AdvancedVI currently provides the following algorithm for evidence lower bound maximization:

  • Evidence Lower-Bound Maximization
General Usage »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 1.10.2 on Tuesday 29 April 2025. Using Julia version 1.11.5.