Turing Logo Turing.jl
  • Get Started
  • Tutorials
  • FAQ
  • Libraries

    • Modelling Languages
    • DynamicPPL
    • JuliaBUGS
    • TuringGLM
    • MCMC
    • AdvancedHMC
    • AbstractMCMC
    • ThermodynamicIntegration
    • AdvancedPS
    • SliceSampling
    • EllipticalSliceSampling
    • NestedSamplers
    • Diagnostics
    • MCMCChains
    • MCMCDiagnosticTools
    • ParetoSmooth
    • Gaussian Processes
    • AbstractGPs
    • KernelFunctions
    • ApproximateGPs
    • Bijectors
    • TuringCallbacks
    • TuringBenchmarkingDeprecated
  • News
  • Team
AdvancedVI.jl
  • AdvancedVI
    • List of Algorithms
  • General Usage
  • Tutorials
    • Basic Example
    • Scaling to Large Datasets
    • Stan Models
    • Normalizing Flows
  • Algorithms
    • KLMinRepGradDescent
    • KLMinRepGradProxDescent
    • KLMinScoreGradDescent
      • General
        • Overview
        • RepGradELBO
        • ScoreGradELBO
  • Variational Families
  • Optimization
Version
  • AdvancedVI
  • AdvancedVI


AdvancedVI

AdvancedVI provides implementations of variational Bayesian inference (VI) algorithms. VI algorithms perform scalable and computationally efficient Bayesian inference at the cost of asymptotic exactness. AdvancedVI is part of the Turing probabilistic programming ecosystem.

List of Algorithms

  • ParamSpaceSGD
  • KLMinRepGradDescent (alias of ADVI)
  • KLMinRepGradProxDescent
  • KLMinScoreGradDescent (alias of BBVI)
General Usage »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 1.14.1 on Thursday 28 August 2025. Using Julia version 1.10.10.