Detailed API for AdvancedHMC.jl

An important design goal of AdvancedHMC.jl is modularity; we would like to support algorithmic research on HMC. This modularity means that different HMC variants can be easily constructed by composing various components, such as preconditioning metric (i.e., mass matrix), leapfrog integrators, trajectories (static or dynamic), adaption schemes, etc. In this section, we will explain the detailed usage of different modules in AdancedHMC.jl to provide a comprehensive udnerstanding of how AdvancedHMC.jl can achieve both modularity and efficiency. The section highlights the key components of AdvancedHMC.jl, with a complete documentation provided at the end.

Hamiltonian mass matrix (metric)

  • Unit metric: UnitEuclideanMetric(dim)
  • Diagonal metric: DiagEuclideanMetric(dim)
  • Dense metric: DenseEuclideanMetric(dim)

where dim is the dimensionality of the sampling space.

Integrator (integrator)

  • Ordinary leapfrog integrator: Leapfrog(ϵ)
  • Jittered leapfrog integrator with jitter rate n: JitteredLeapfrog(ϵ, n)
  • Tempered leapfrog integrator with tempering rate a: TemperedLeapfrog(ϵ, a)

where ϵ is the step size of leapfrog integration.

Kernel (kernel)

  • Static HMC with a fixed number of steps (n_steps) from Neal [1]: HMCKernel(Trajectory{EndPointTS}(integrator, FixedNSteps(integrator)))
  • HMC with a fixed total trajectory length (trajectory_length) from Neal [1]: HMCKernel(Trajectory{EndPointTS}(integrator, FixedIntegrationTime(trajectory_length)))
  • Original NUTS with slice sampling from Hoffman et al. [2]: HMCKernel(Trajectory{SliceTS}(integrator, ClassicNoUTurn()))
  • Generalised NUTS with slice sampling from Betancourt [3]: HMCKernel(Trajectory{SliceTS}(integrator, GeneralisedNoUTurn()))
  • Original NUTS with multinomial sampling from Betancourt [3]: HMCKernel(Trajectory{MultinomialTS}(integrator, ClassicNoUTurn()))
  • Generalised NUTS with multinomial sampling from Betancourt [3]: HMCKernel(Trajectory{MultinomialTS}(integrator, GeneralisedNoUTurn()))

Adaptor (adaptor)

  • Adapt the mass matrix metric of the Hamiltonian dynamics: mma = MassMatrixAdaptor(metric)

    • This is lowered to UnitMassMatrix, WelfordVar or WelfordCov based on the type of the mass matrix metric
  • Adapt the step size of the leapfrog integrator integrator: ssa = StepSizeAdaptor(δ, integrator)

    • It uses Nesterov's dual averaging with δ as the target acceptance rate.
  • Combine the two above naively: NaiveHMCAdaptor(mma, ssa)

  • Combine the first two using Stan's windowed adaptation: StanHMCAdaptor(mma, ssa)

The sample functions

sample(
    rng::Union{AbstractRNG,AbstractVector{<:AbstractRNG}},
    h::Hamiltonian,
    κ::HMCKernel,
    θ::AbstractVector{<:AbstractFloat},
    n_samples::Int;
    adaptor::AbstractAdaptor=NoAdaptation(),
    n_adapts::Int=min(div(n_samples, 10), 1_000),
    drop_warmup=false,
    verbose::Bool=true,
    progress::Bool=false,
)

Draw n_samples samples using the kernel κ under the Hamiltonian system h

  • The randomness is controlled by rng.

    • If rng is not provided, the default random number generator (Random.default_rng()) will be used.
  • The initial point is given by θ.

  • The adaptor is set by adaptor, for which the default is no adaptation.

    • It will perform n_adapts steps of adaptation, for which the default is 1_000 or 10% of n_samples, whichever is lower.
  • drop_warmup specifies whether to drop samples.

  • verbose controls the verbosity.

  • progress controls whether to show the progress meter or not.

Note that the function signature of the sample function exported by AdvancedHMC.jl differs from the sample function used by Turing.jl. We refer to the documentation of Turing.jl for more details on the latter.

Full documentation of APIs in AdvancedHMC.jl

AdvancedHMC.AbstractIntegratorType
abstract type AbstractIntegrator

Represents an integrator used to simulate the Hamiltonian system.

Implementation

A AbstractIntegrator is expected to have the following implementations:

  • stat(@ref)
  • nom_step_size(@ref)
  • step_size(@ref)
source
AdvancedHMC.ClassicNoUTurnType
struct ClassicNoUTurn{F<:AbstractFloat} <: AdvancedHMC.DynamicTerminationCriterion

Classic No-U-Turn criterion as described in Eq. (9) in [1].

Informally, this will terminate the trajectory expansion if continuing the simulation either forwards or backwards in time will decrease the distance between the left-most and right-most positions.

Fields

  • max_depth::Int64

  • Δ_max::AbstractFloat

References

  1. Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623. (arXiv)
source
AdvancedHMC.FixedIntegrationTimeType
struct FixedIntegrationTime{F<:AbstractFloat} <: AdvancedHMC.StaticTerminationCriterion

Standard HMC implementation with a fixed integration time.

Fields

  • λ::AbstractFloat: Total length of the trajectory, i.e. take floor(λ / integrator_step_size) number of leapfrog steps.

References

  1. Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), 2. (arXiv)
source
AdvancedHMC.FixedNStepsType
struct FixedNSteps <: AdvancedHMC.StaticTerminationCriterion

Static HMC with a fixed number of leapfrog steps.

Fields

  • L::Int64: Number of steps to simulate, i.e. length of trajectory will be L + 1.

References

  1. Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), 2. (arXiv)
source
AdvancedHMC.GeneralisedNoUTurnType
struct GeneralisedNoUTurn{F<:AbstractFloat} <: AdvancedHMC.DynamicTerminationCriterion

Generalised No-U-Turn criterion as described in Section A.4.2 in [1].

Fields

  • max_depth::Int64

  • Δ_max::AbstractFloat

References

  1. Betancourt, M. (2017). A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434.
source
AdvancedHMC.GeneralizedLeapfrogType
struct GeneralizedLeapfrog{T<:(Union{AbstractVector{var"#s20"}, var"#s20"} where var"#s20"<:AbstractFloat)} <: AdvancedHMC.AbstractLeapfrog{T<:(Union{AbstractVector{var"#s20"}, var"#s20"} where var"#s20"<:AbstractFloat)}

Generalized leapfrog integrator with fixed step size ϵ.

Fields

  • ϵ::Union{AbstractVector{var"#s20"}, var"#s20"} where var"#s20"<:AbstractFloat: Step size.

  • n::Int64

References

  1. Girolami, Mark, and Ben Calderhead. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods." Journal of the Royal Statistical Society Series B: Statistical Methodology 73, no. 2 (2011): 123-214.
source
AdvancedHMC.HMCType
HMC(ϵ::Real, n_leapfrog::Int)

Hamiltonian Monte Carlo sampler with static trajectory.

Fields

  • n_leapfrog: Number of leapfrog steps.

  • integrator: Choice of integrator, specified either using a Symbol or AbstractIntegrator

  • metric: Choice of initial metric; Symbol means it is automatically initialised. The metric type will be preserved during automatic initialisation and adaption.

source
AdvancedHMC.HMCDAType
HMCDA(δ::Real, λ::Real, integrator = :leapfrog, metric = :diagonal)

Hamiltonian Monte Carlo sampler with Dual Averaging algorithm.

Fields

  • δ: Target acceptance rate for dual averaging.

  • λ: Target leapfrog length.

  • integrator: Choice of integrator, specified either using a Symbol or AbstractIntegrator

  • metric: Choice of initial metric; Symbol means it is automatically initialised. The metric type will be preserved during automatic initialisation and adaption.

Notes

For more information, please view the following paper (arXiv link):

  • Hoffman, Matthew D., and Andrew Gelman. "The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo." Journal of Machine Learning Research 15, no. 1 (2014): 1593-1623.
source
AdvancedHMC.HMCProgressCallbackType
HMCProgressCallback

A callback to be used with AbstractMCMC.jl's interface, replicating the logging behavior of the non-AbstractMCMC sample.

Fields

  • pm: Progress meter from ProgressMeters.jl, or nothing.

  • verbose: If pm === nothing and this is true some information will be logged upon completion of adaptation.

  • num_divergent_transitions: Number of divergent transitions.

  • num_divergent_transitions_during_adaption

source
AdvancedHMC.HMCSamplerType
HMCSampler

An AbstractMCMC.AbstractSampler for kernels in AdvancedHMC.jl.

Fields

Notes

Note that all the fields have the prefix initial_ to indicate that these will not necessarily correspond to the kernel, metric, and adaptor after sampling.

To access the updated fields, use the resulting HMCState.

source
AdvancedHMC.JitteredLeapfrogType
struct JitteredLeapfrog{FT<:AbstractFloat, T<:Union{AbstractArray{FT<:AbstractFloat, 1}, FT<:AbstractFloat}} <: AdvancedHMC.AbstractLeapfrog{T<:Union{AbstractArray{FT<:AbstractFloat, 1}, FT<:AbstractFloat}}

Leapfrog integrator with randomly "jittered" step size ϵ for every trajectory.

Fields

  • ϵ0::Union{AbstractVector{FT}, FT} where FT<:AbstractFloat: Nominal (non-jittered) step size.

  • jitter::AbstractFloat: The proportion of the nominal step size ϵ0 that may be added or subtracted.

  • ϵ::Union{AbstractVector{FT}, FT} where FT<:AbstractFloat: Current (jittered) step size.

Description

This is the same as LeapFrog(@ref) but with a "jittered" step size. This means that at the beginning of each trajectory we sample a step size ϵ by adding or subtracting from the nominal/base step size ϵ0 some random proportion of ϵ0, with the proportion specified by jitter, i.e. ϵ = ϵ0 - jitter * ϵ0 * rand(). p Jittering might help alleviate issues related to poor interactions with a fixed step size:

  • In regions with high "curvature" the current choice of step size might mean over-shoot leading to almost all steps being rejected. Randomly sampling the step size at the beginning of the trajectories can therefore increase the probability of escaping such high-curvature regions.
  • Exact periodicity of the simulated trajectories might occur, i.e. you might be so unlucky as to simulate the trajectory forwards in time L ϵ and ending up at the same point (which results in non-ergodicity; see Section 3.2 in [1]). If momentum is refreshed before each trajectory, then this should not happen exactly but it can still be an issue in practice. Randomly choosing the step-size ϵ might help alleviate such problems.

References

  1. Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte Carlo, 2(11), 2. (arXiv)
source
AdvancedHMC.LeapfrogType
struct Leapfrog{T<:(Union{AbstractVector{var"#s29"}, var"#s29"} where var"#s29"<:AbstractFloat)} <: AdvancedHMC.AbstractLeapfrog{T<:(Union{AbstractVector{var"#s29"}, var"#s29"} where var"#s29"<:AbstractFloat)}

Leapfrog integrator with fixed step size ϵ.

Fields

  • ϵ::Union{AbstractVector{var"#s29"}, var"#s29"} where var"#s29"<:AbstractFloat: Step size.
source
AdvancedHMC.MultinomialTSMethod
struct MultinomialTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Multinomial sampler for a trajectory consisting only a leaf node.

  • tree weight is the (unnormalised) energy of the leaf.
source
AdvancedHMC.MultinomialTSMethod
struct MultinomialTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Multinomial sampler for the starting single leaf tree. (Log) weights for leaf nodes are their (unnormalised) Hamiltonian energies.

Ref: https://github.com/stan-dev/stan/blob/develop/src/stan/mcmc/hmc/nuts/base_nuts.hpp#L226

source
AdvancedHMC.MultinomialTSType
struct MultinomialTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Multinomial trajectory sampler carried during the building of the tree. It contains the weight of the tree, defined as the total probabilities of the leaves.

Fields

  • zcand::AdvancedHMC.PhasePoint: Sampled candidate PhasePoint.

  • ℓw::AbstractFloat: Total energy for the given tree, i.e. the sum of energies of all leaves.

source
AdvancedHMC.NUTSType
NUTS(δ::Real; max_depth::Int=10, Δ_max::Real=1000, integrator = :leapfrog, metric = :diagonal)

No-U-Turn Sampler (NUTS) sampler.

Fields

  • δ: Target acceptance rate for dual averaging.

  • max_depth: Maximum doubling tree depth.

  • Δ_max: Maximum divergence during doubling tree.

  • integrator: Choice of integrator, specified either using a Symbol or AbstractIntegrator

  • metric: Choice of initial metric; Symbol means it is automatically initialised. The metric type will be preserved during automatic initialisation and adaption.

source
AdvancedHMC.PartialMomentumRefreshmentType
struct PartialMomentumRefreshment{F<:AbstractFloat} <: AdvancedHMC.AbstractMomentumRefreshment

Partial momentum refreshment with refresh rate α.

Fields

  • α::AbstractFloat

See equation (5.19) [1]

r' = α⋅r + sqrt(1-α²)⋅G

where r is the momentum and G is a Gaussian random variable.

References

  1. Neal, Radford M. "MCMC using Hamiltonian dynamics." Handbook of markov chain monte carlo 2.11 (2011): 2.
source
AdvancedHMC.SliceTSMethod
struct SliceTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Slice sampler for the starting single leaf tree. Slice variable is initialized.

source
AdvancedHMC.SliceTSMethod
struct SliceTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Create a slice sampler for a single leaf tree:

  • the slice variable is copied from the passed-in sampler s and
  • the number of acceptable candicates is computed by comparing the slice variable against the current energy.
source
AdvancedHMC.SliceTSType
struct SliceTS{F<:AbstractFloat, P<:AdvancedHMC.PhasePoint} <: AdvancedHMC.AbstractTrajectorySampler

Trajectory slice sampler carried during the building of the tree. It contains the slice variable and the number of acceptable condidates in the tree.

Fields

  • zcand::AdvancedHMC.PhasePoint: Sampled candidate PhasePoint.

  • ℓu::AbstractFloat: Slice variable in log-space.

  • n::Int64: Number of acceptable candidates, i.e. those with probability larger than slice variable u.

source
AdvancedHMC.TemperedLeapfrogType
struct TemperedLeapfrog{FT<:AbstractFloat, T<:Union{AbstractArray{FT<:AbstractFloat, 1}, FT<:AbstractFloat}} <: AdvancedHMC.AbstractLeapfrog{T<:Union{AbstractArray{FT<:AbstractFloat, 1}, FT<:AbstractFloat}}

Tempered leapfrog integrator with fixed step size ϵ and "temperature" α.

Fields

  • ϵ::Union{AbstractVector{FT}, FT} where FT<:AbstractFloat: Step size.

  • α::AbstractFloat: Temperature parameter.

Description

Tempering can potentially allow greater exploration of the posterior, e.g. in a multi-modal posterior jumps between the modes can be more likely to occur.

source
AdvancedHMC.TerminationType
Termination

Termination reasons

  • dynamic: due to stoping criteria
  • numerical: due to large energy deviation from starting (possibly numerical errors)
source
AdvancedHMC.TrajectoryType
struct Trajectory{TS<:AdvancedHMC.AbstractTrajectorySampler, I<:AdvancedHMC.AbstractIntegrator, TC<:AdvancedHMC.AbstractTerminationCriterion}

Numerically simulated Hamiltonian trajectories.

source
AdvancedHMC.TransitionType
struct Transition{P<:AdvancedHMC.PhasePoint, NT<:NamedTuple}

A transition that contains the phase point and other statistics of the transition.

Fields

  • z::AdvancedHMC.PhasePoint: Phase-point for the transition.

  • stat::NamedTuple: Statistics related to the transition, e.g. energy.

source
AdvancedHMC.Adaptation.NesterovDualAveragingType

An implementation of the Nesterov dual averaging algorithm to tune step size.

References

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn Sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623. Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical programming, 120(1), 221-259.

source